I published my original “We Are Stardust” post some time ago, introducing the infographic above, which shows the cosmic origins of the chemical elements that make up our bodies, according to mass. At that time I concluded that Joni Mitchell should actually have sung “We are 90% stardust,” because that’s the proportion of our body weight made up of atoms that originated in the nuclear fusion processes within stars. The remaining 10% is almost entirely hydrogen, which is left over from the Big Bang.
The original post got quite a lot of traffic, largely courtesy of the Damn Interesting website. But it also prompted one correspondent to ask, “But what proportion of our atoms comes from stars?” Which is an interesting question, with an answer that requires a whole new infographic.
If you want to know more about the background to all this—how various stellar processes produce the various chemical elements, and the function of those elements in the human body—I refer you back to my original post.
This time around, I’m just going to take the various weights by element I used in my last post, and divide them by the atomic weight of each element. There’s a wide range of atomic weights among the 54 elements on my list of those present in our bodies in more than 100-microgram quantities. The heaviest atoms in that group, like mercury and lead, are more than 200 times heavier than the lightest, hydrogen. So each microgram of hydrogen contains 200 times more atoms than a microgram of mercury or lead. And that skews the atomic make-up of the human body strongly towards the lighter elements, and particularly to those lighter elements that are common components of our tissues.
Most of our weight is water, which consists of hydrogen and oxygen, making these two elements the most common atoms in our bodies. The carbohydrates and fats in our tissues also contain hydrogen and oxygen, along with a lot of carbon, which is our third most common atom. Proteins contain the same three elements, along with nitrogen and a little sulphur. And in fact the four elements hydrogen, oxygen, carbon and nitrogen, all relatively light and all relatively common, account for almost all the atoms in our bodies. The seven kilograms of hydrogen in a 70-kilogram person accounts for 62% of all that person’s atoms. Oxygen accounts for 24%, carbon 12%, and nitrogen 1%. That leaves just 1% for the fifty other elements on my list.
The calcium and phosphorus in our bones and dissolved in our tissues account for a further 0.5%. The only other elements present at levels greater than 0.01% are the sulphur in our proteins, and the sodium, magnesium, chlorine and potassium which are dissolved as important ions in our body fluids. Everything else—the iron in our haemoglobin, the cobalt in Vitamin B12, the iodine in our thyroid glands—accounts for just 0.003% of our atoms.
Hydrogen is the major element left over from the Big Bang, so our atoms are dominated by that primordial element. Oxygen comes almost entirely from core-collapse supernovae, and so is the main representative of that stellar process in our bodies, along with significant amounts of carbon and nitrogen. But most of our carbon and nitrogen was blown off by red giant stars, and those two elements account for most of our atoms from that source. In fact those three sources—the Big Bang, core-collapse supernovae and red giant stars—provided almost all our atoms:
If you compare the graphic above to the one at the head of this post, you can see how the balance has shifted strongly towards hydrogen (with its very light atoms) and away from oxygen (with atoms sixteen times heavier than hydrogen). And the even heavier atoms from Type Ia supernovae are so rare I can’t now add them visibly to my graphic.
So perhaps Joni Mitchell should have sung, “We are 38% stardust.”
or
Takes me back to tutoring on the Open University’s entry level course S103 Discovering Science at the turn of the Millennium … thank you!
Writing it made me think of the 1960s part-work magazine series, Understanding Science, of which I have fond memories. The bound volumes are now changing hands for hundreds of pounds, unfortunately, which is a bit steep for a burst of nostalgia.