Hasegawa 1/48 SH-3H Sea King (Apollo Recovery SH-3D Conversion): Part 4

With the main bodywork of the aircraft completed last time, I finally got her standing on her undercarriage, in the form a set of ResKit resin wheels—slightly more detailed than the kit parts, with a nice open fork for the rear wheel.

The kit parts for the undercarriage legs need a very slight modification. They come as an interchangeable pair, but they were in fact slightly asymmetrical, with tie-down lugs only on the outside of each leg. A little work with a scalpel removed the unrealistic inner lugs, and then I just needed to remember to put the legs on the appropriate side of the aircraft.

Hasegawa 1/48 SH-3H Sea King canopy polish
Click to enlarge

Then it was time for the rotors. I painted the red and white warning stripes on the tail rotor, and the yellow tips to the main rotor, but resorted to printing up my own decals for the yellow stripes on the rotor blades.

Hasegawa 1/48 SH-3H Sea King rotor test starboard
Click to enlarge
Hasegawa 1/48 SH-3H Sea King rotor test port
Click to enlarge

I wanted to model the main rotor folded, because I’m aiming for the appearance of this helicopter at a very specific moment in its career—at about 07:55 GMT on 24 July 1969, just after landing on the deck of the USS Hornet with the Apollo 11 astronauts on board, while being towed to the elevator to descend into the hangar bay.

Old 66 ref 1
Click to enlarge
Screen capture from Apollo 11 documentary film

With the rotors test-fitted, I removed them while I added all the fiddly surface detail needed to make the helicopter come alive. I added a length of cable and a sling to the kit’s winch, so that I could reproduce the partially stowed position in the view above.

I added my scratch built camera mounts and the SARAH yagi antennae, which had been languishing in a pot for safe-keeping during the whole build process. I belatedly realized that I had planned to place the forward camera in the wrong place on the forward weapons mount points. I’d aimed to place it on the forward position of these two points, tucked under the horizontal sponson support. But a late find of an underside view of this aircraft (during the Apollo 10 recovery) convinced be that the camera needs to be on the aft position, behind the sponson support, where it’s clearly visible in the photo. That meant a little work with a scalpel and some touch-up paint, and the rerouting of the forward camera cable-run in its last few millimetres, but it was fairly painlessly accomplished.

And I put together a rotor retainer sling from styrene and painted paper, to restrain the two outermost folded rotors. You can see it in the image above, and there’s additional detail visible in hangar-bay views like this one:

Detail showing port side of tail, "Old 66" Apollo 11 recovery
Screen capture from Apollo 11 documentary film

And I rigged the radio antennae on both sides of the fuselage, placing the kit mounting pylons in locations gleaned from the aircraft photographs, and then running stretched sprue between them to reproduce the run of the aerial wire. The underside view I linked to earlier was particularly useful in judging the length of the pylons, and from peering at various other photographs, this is what I came up with:

SH-3D port aerial diagram
Click to enlarge
SH-3D starboard aerial diagram
Click to enlarge

Open dots are mounting pylons, closed dots are points where wires join (on the starboard side, a short length of wire appears to come out of the fuselage and link to a simple span of wire between two end pylons.)

By the time I was placing cockpit mirrors and pitot tubes, I was beginning to run out of places to hold the model.


Here’s the final result:

1/48 Sea King SH-3D, BuNo 152711, Apollo Recovery (1)
Click to enlarge
1/48 Sea King SH-3D, BuNo 152711, Apollo Recovery (2)
Click to enlarge
1/48 Sea King SH-3D, BuNo 152711, Apollo Recovery (3)
Click to enlarge
1/48 Sea King SH-3D, BuNo 152711, Apollo Recovery (4)
Click to enlarge
1/48 Sea King SH-3D, BuNo 152711, Apollo Recovery (5)
Click to enlarge
1/48 Sea King SH-3D, BuNo 152711, Apollo Recovery (6)
Click to enlarge
1/48 Sea King SH-3D, BuNo 152711, Apollo Recovery (7)
Click to enlarge
1/48 Sea King SH-3D, BuNo 152711, Apollo Recovery (9)
Click to enlarge
1/48 Sea King SH-3D, BuNo 152711, Apollo Recovery (8)
Click to enlarge

6 thoughts on “Hasegawa 1/48 SH-3H Sea King (Apollo Recovery SH-3D Conversion): Part 4”

  1. Hey Barry. Thanks for the kind words. I’m impressed you’ve stuck with my witterings for so long!
    Keep safe.

  2. Excelente trabajo de investigación y de replanteo de la maqueta. Saludos y Felicitaciones un apasionado del Sea King. Adrian Moltoni – ARGENTINA

  3. As a former flightdeck sailor I can’t look at there pictures without hearing them in my mind. The whole first launch of the day starting cycle is still strikingly vivid in my mind.
    Oddly enough doc, I’ve see more Sea Kings taken out of commission by wrenches dropped from high on the island than by going into the drink. 5 vs 2 by my count. And this is despite of all the highly intelligent individuals who make up the safety protocols required for such work. A smaller falling wrench will crack the rotor blade if nothing else. (Which, by the way, are hollow and pressurized with nitrogen so as to detect cracks instantly.) I’ve seen larger wrenches go all the way through and out the belly.
    It isn’t accidental that the more inexpensive aircraft, Sea Kings and Hawkeyes, are parked next to it.

    1. The little BIM gauges on the rotor blades, which change colour if the nitrogen pressure inside the blade drops, remind me of a very basic mechanical low-pressure warning we used to have on an ancient anaesthetic machine I once used. But I can’t for the life of me place it, at present. Same principle, I think–the pressure holds the red indicator stripes out of sight, but if the pressure drops they pop into view.

Leave a Reply to Oikofuge Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.